Mathematics: analysis and approaches	
Higher Level	Name
Paper 2	
Date:	
2 hours	

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [110 marks].

exam: 12 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

The diagram below shows two circles which have the same centre O. The smaller circle has a radius of 12 cm and the larger circle has a radius of 20 cm. The two arcs AB and CD have the same central angle θ , where θ = 1.3 radians. Find the area of the shaded region.

2. [Maximum mark: 5]

Two lines have the vector equations $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$.

Find the obtuse angle between the lines.

3. [Maximum mark: 5]

Find the coefficient of the x^3 term in the expansion of $\left(\frac{2}{3}x+3\right)^8$.

4. [Maximum mark: 6]

The table below shows the marks earned on a quiz by a group of students.

Mark	1	2	3	4	5
Number of students	8	7	С	9	1

The median is 3 and the mode is 4 for the set of marks. Find the **three** possible values of c.

[4]

5. [Maximum mark: 6]

Consider the complex number $z = \frac{\sqrt{2}}{1-i} - i$.

- (a) Show that z can be expressed, in the form x + yi, as $z = \frac{\sqrt{2}}{2} + \left(\frac{\sqrt{2} 2}{2}\right)i$. [2]
- (b) (i) Find the **exact** value of the modulus of z.

(ii) Find the argument θ of z, where $-\pi < \theta \le \pi$.

- 6. [Maximum mark: 7]
 - (a) Express $\frac{1}{2x^2+7x-4}$ in partial fractions; i.e. as the sum of two fractions. [4]
 - (b) Given that $\int_{1}^{4} \frac{9}{2x^2 + 7x 4} dx = \ln k$, find the **exact** value of k. [3]

Livia	All that to j	
(a)	Write down the Maclaurin expansion of e^x up to the term in x^4 .	[1]
(b)	Find the Maclaurin expansion of e^{x^2} up to the term in x^4 .	[2]
(c)	Hence, find the Maclaurin expansion of e^{x+x^2} up to the term in x^4 .	[3]
• • •		

8. [Maximum mark: 6]

Consider the following system of equations

$$2x+y+6z=0$$

$$4x+3y+14z=4$$

$$2x-2y+(\alpha-2)z=\beta-12$$

Find the conditions on α and β for which

(a)	the system has no solutions;	[2]
(b)	the system has only one solution;	[2]
(c)	the system has an infinite number of solutions.	[2]

9. [Maximum mark: 7]

Consider the differential equation $x\frac{\mathrm{d}y}{\mathrm{d}x}+3y=\frac{1}{x},\ x>0$ such that y=1 when x=1. Show that the solution to this differential equation is $y=\frac{x^2+1}{2x^3}$.

Do **not** write solutions on this page.

Section B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 15]

The diagram below shows the quadrilateral PQRS. Angle QPS and angle QRS are obtuse.

 $PQ=6\,\mathrm{cm},\ QR=5\,\mathrm{cm},\ RS=5\,\mathrm{cm},\ PS=5\,\mathrm{cm},\ P\hat{Q}\,S=30^\circ\,,\ Q\hat{P}\,S=p^\circ\,,\ Q\hat{R}S=r^\circ$

- (a) Use the sine rule to show that $QS = 10\sin p$. [1]
- (b) Use the cosine rule in triangle PQS to find another expression for QS. [3]
- (c) (i) Hence, find p, giving your answer to two decimal places.
 - (ii) Find QS. [6]
- (d) (i) Find *r*.
 - (ii) Hence, or otherwise, find the area of triangle QRS. [5]

Do **not** write solutions on this page.

11. [Maximum mark: 21]

A continuous random variable X has probability density function f defined by

$$f(x) = \begin{cases} \frac{\pi}{3} \sin\left(\frac{\pi}{2}x\right), & 0 \le x \le 1\\ mx + b, & 1 \le x \le k\\ 0, & \text{otherwise} \end{cases}$$

- (a) Given that f is continuous on the interval $0 \le x \le k$ and that the graph of f intersects the x-axis at (k,0), show that $k = \frac{\pi+2}{\pi}$. [5]
- (b) Find the value of m and the value of b. [3]
- (c) Sketch the graph of y = f(x). [2]
- (d) Write down the mode of X. [1]
- (e) Given that $\int_{1}^{\frac{\pi+2}{\pi}} \left[x \left(mx + b \right) \right] dx = \frac{3\pi+2}{9\pi}$, find the **exact** value of the mean of X. [7]
- (f) Find the value of the median of X. [3]

12. [Maximum mark: 21]

The function g is defined as $g(x) = e^x + \frac{1}{2e^x}$, $x \in \mathbb{R}$.

- (a) (i) Explain why the inverse function g^{-1} does not exist.
 - (ii) The line L intersects the curve y = g(x) at points A and B where x = -1 at A and x = 1 at B. Show that the equation of L is $y = \frac{e^2 1}{4e}x + \frac{3e^2 + 3}{4e}$.
 - (iii) Point C is on the curve y = g(x). The line tangent to the curve y = g(x) at C is parallel to L. Find the coordinates of C. [13]
- (b) The domain of g is now restricted to $x \ge 0$.
 - (i) Find an expression for $g^{-1}(x)$.
 - (ii) Find the volume generated when the region bounded by the curve y = g(x) and the lines x = 0 and y = 4 is rotated through an angle of 2π radians about the *y*-axis. [8]